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Since the advent of ChatGPT in November 2022, there has been a growing interest 
and	widespread	 speculation	 on	 how	 Artificial	 Intelligence	 (AI),	 more	 specifically	
generative AI, has the potential to revolutionize research and applications across 
disciplines, with real-world implications. Applied linguistics researchers and prac-
titioners have long adapted to the use of technology in language learning and teach-
ing, where AI already plays a role in the form of Natural Language Processing (NLP), 
Machine Learning (ML), and other related technologies. This Expositions article 
introduces generative AI, explains how it works and what distinguishes it from other 
AI	technologies,	and	discusses	its	growing	influence	in	the	applications	relevant	to	
applied linguists. The article concludes with some guidance on how to navigate the 
generative AI space as an applied linguist while acknowledging the current limita-
tions, including how to use generative AI in research and practice.

2022年11月のChatGPTの登場以来、人工知能（AI）、より具体的には生成AIが、現実の世界に
どのような影響を及ぼし、分野横断的な研究や応用に革命をもたらす可能性があるのか、関心
が高まり、さまざまな憶測が現在広がっている。応用言語学の研究者や実践者は、自然言語処
理（NLP）、機械学習（ML）、その他の関連技術の形でAIがすでに役割を果たしている言語学習
や教育における技術の使用に、長い間適応してきた。このExpositionsの論文では、生成AIを紹
介し、その仕組みと他のAI技術との違いを説明し、応用言語学にどのように影響をもたらすのか
について論じている。最後には、応用言語学者として、現在の限界を認識しながら、生成AIをど
のように研究・実践に活用するかなど、生成AIの空間をどのようにうまく使っていけるかを紹介し
ている。
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A rtificial	 Intelligence	 technologies	 in	 the	 form	 of	Natural	 Language	
Processing (NLP) and Machine Learning (ML) have been used in 
Intelligent Computer Assisted Language Learning (ICALL), particu-

larly in the development of support tools for reading, writing, speaking, or 
listening, for intelligent tutoring systems and automated assessment (Heift, 
2012). Software applications targeting teachers as well as students that rely 
on such technologies have been developed and researched for almost two 
decades now. The potential of AI technologies in building support tools for 
teachers to select course materials (Brown & Eskenazi, 2004; Sheehan et 
al., 2014), automated grading of written and spoken language (Burstein et 
al., 2013; Chen et al., 2018), and automated creation of questions and as-
sessment items (Chinkina & Meurers, 2017) have all been well explored 
in the past. These technologies have also been employed to build language 
learner support tools for writing (Madnani et al., 2018) and speaking (Kheir 
et al., 2023). The availability of language learning mobile apps such as Duol-
ingo (duolingo.com), general purpose writing assistants such as Grammarly 
(grammarly.com), pronunciation and speaking apps such as elsaspeak 
(elsaspeak.com) are examples of how this strand of research evolved into 
practical everyday tools. The use of AI in language learning and teaching can 
thus be considered an active and established area of research and practice. 
Vajjala (2018) and Meurers (2021) give an overview of some of the research 
on the role of machine learning and natural language processing respec-
tively in language learning and teaching.

ChatGPT (https://chat.openai.com/) was released as an open-access web 
tool in November 2022 and has since played an important role in the discus-
sion	around	the	applications	of	artificial	intelligence,	more	specifically,	gen-
erative	artificial	intelligence	in	various	areas.	Within	the	realm	of	education,	
it has been utilized across a range of subject areas such as medical education 
(Kung et al., 2023; Tsang, 2023), computing education (Denny et al., 2023), 
and science education (Cooper, 2023). Although there was an initial wave 
of skepticism and a call to ban the use of such tools in education contexts, 
there are now calls to think about ways to incorporate them into education 
policies. The New York City public schools AI policy lab is an example of such 
an initiative (Klein, 2023). Khan Academy (https://www.khanacademy.
org/), an online education provider, announced Khanmigo, an AI-powered 
teaching assistant, earlier this year, leveraging GPT-4, ChatGPT’s successor 

http://duolingo.com
http://grammarly.com
http://elsaspeak.com
https://chat.openai.com/
https://www.khanacademy.org/
https://www.khanacademy.org/
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(Khan Academy, 2023). In the language learning space, applications such 
as Duolingo (Duolingo, 2023) and Grammarly (Grammarly, 2023) quickly 
moved towards incorporating generative AI into their existing software ap-
plications. The rapid adaptation of this new technology into these various 
areas of educational technologies indicates its importance for educational 
technologies in general, and language learning technologies in particular.

Considering that AI-based technologies have already been used in 
language learning and teaching for some time now, what new things does 
generative AI bring into the picture? Does it just do existing things better, or 
does it enable new possibilities? This Expositions article explores the role of 
generative AI in language learning and teaching technologies and addresses 
the following questions:

1. What is generative AI and how does it work?
2. How does it impact the technologies related to language learning and 

teaching?
3. How should one work with generative AI, as an applied linguist?
4. What are some limitations of generative AI, and caveats to working 

with it?

The target audience is expected to be primarily applied linguists famil-
iar	with	 the	use	of	 language	 technologies	and	artificial	 intelligence	 in	 the	
context of language learning and teaching, and interested in knowing more 
about how the recent developments in generative AI are useful for research 
and practice in this area. The next four sections address the four questions 
listed above, respectively.

Here is a quick note on the terminology before diving in: While discuss-
ing what AI systems can and cannot do, it is common to use words such 
as “learning”, “understanding”, “reasoning” etc. Such words are only used 
in a metaphorical sense, for easier comprehension, and there are no paral-
lels with human learning/understanding/reasoning abilities. Readers are 
advised	 to	not	conflate	machine	processes	with	human	processes	as	 they	
explore this article further.

Generative AI—An Overview
The ultimate goal of any AI system is to achieve a semblance of human-like 

intelligence in the tasks it is expected to perform. There are many ways of 
achieving this goal, from using hard-coded rule-based reasoning to learning 
to perform different tasks in a data-driven manner, from a large volume of ex-
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amples,	without	explicit	specification	of	rules.	Generative AI refers to the form 
of AI that is capable of processing and generating new content for a range of 
input/output forms (e.g., text, image, audio, video, a combination of these et 
cetera). Generative AI models today are responsible for creating human-like 
texts, realistic images and videos, and natural-sounding audio. Deep learning, 
a	form	of	data-driven	learning	based	on	artificial	neural	networks,	is	the	force	
behind all the recent developments in generative AI. There are many different 
forms of generative models for processing different forms of data, and some of 
these models can also learn multimodally, that is, working with different forms 
of input or output at the same time. In this article, we will focus on one type 
of generative AI that is more relevant to our context—Large Language Models 
(LLMs).

Language models learn to assign probabilities to a sequence of words 
(Jurafsky & Martin, 2023; Chapter 3). They learn the probabilities of word 
sequences by using the frequency information from large amounts of textual 
data. Readers familiar with the use of word concordance models in corpus 
linguistics may be familiar with this approach. Language models go fur-
ther and use that knowledge to predict probabilities for future sequences, 
which can then be used to perform a range of language processing tasks, 
from	 text	 classification	 to	 machine	 translation.	 Neural language models, 
based	on	artificial	neural	networks,	use	massive	amounts	of	textual	data	to	
learn these probabilities. Such massive data is available in many languages 
in the form of web texts, Wikipedia dumps, and other such sources. This 
process of learning the probabilities is known as “pre-training”. Performing 
pre-training on increasing amounts of textual data from various sources 
resulted	 in	more	 and	more	 powerful	 language	models	 over	 the	 past	 five	
years, since the arrival of the BERT language model a few years ago (Devlin 
et al., 2018). A pre-trained language model that passed through this pro-
cess	with	massive	amounts	of	generic	text	data	can	be	further	“fine-tuned”	
with	 smaller	amounts	of	 task-specific	data	 to	perform	specific	 tasks	 (e.g.,	
question answering, machine translation et cetera), by a process known as 
“transfer learning” (Howard & Ruder, 2018).

Autoregressive language models are a form of neural language models 
that undergo pre-training by repeatedly predicting the next token given a 
sequence of tokens. A token can be understood as a machine equivalent of 
a word. Note that what humans understand as one word is considered to 
be composed of multiple tokens by a neural language model. For example, 
consider this sentence - “Sara vociferously denied to comment”. A traditional 
NLP system may split it linguistically and identify six tokens [“sara,” “vo-
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ciferously,” “denied,” “to,” “comment”] in this sentence, like a human would 
perhaps do. However, GPT-4 splits it into 9 tokens instead, as [“S”, “ara”, “ 
voc”, “ifer”, “ously”, “ denied”, “ to”, “ comment”, “.”]. The tokens are not neces-
sarily morphologically meaningful, and this tokenization is machine-learned 
by	processing	word	patterns	in	the	data,	to	create	a	finite	vocabulary	for	the	
language model.

The task of next token prediction may seem like a simple task from a 
layperson’s perspective. Yet, it forms the foundation for all the modern-day 
LLMs, as many NLP tasks can be framed as text completion tasks, laying the 
foundations for a generative language model. For example, if one gives an 
input “What is the capital of Canada?”, a pre-trained LLM can respond with 
“Ottawa” as an answer.  As the amount of pre-training data increased, the 
models became capable of learning to perform a task based on a descrip-
tion, with very few or no examples, without requiring any explicit further 
fine-tuning.	GPT-3	(Brown	et	al.,	2020),	an	LLM	developed	by	OpenAI	and	
trained on half a trillion tokens, is an example of such a general-purpose 
LLM. Today’s LLMs (such as ChatGPT) follow this autoregressive approach 
to text generation and show some ability to process human input and 
generate an appropriate output for a given input from a human user, in a 
human language. The current generation of LLMs can also generate natural-
sounding text following human instructions. Development of new tech-
niques to improve over what a language model “learns” during pre-training 
resulted in the latest generative large language models we see today, such 
as ChatGPT, GPT-4 (OpenAI, 2023), Gemini (Gemini Team, 2023) and Claude 
(Anthropic, 2023). In addition to such commercial LLMs, a wide range of 
non-commercial, open-source alternatives, such as Zephyr (Tunstall et al., 
2023), Falcon (Almazourei et al., 2023), and LLaMa2 (Touvron et al., 2023), 
to name a few, are other alternatives. There is also a growing body of work 
on developing small, focused language models (e.g., Li et al., 2023; Zhang et 
al., 2024) that are good at reasoning from data and performing tasks that 
require some form of natural language understanding. The generative LLMs 
mentioned here are only a few examples, and the readers are suggested to 
refer to Zhao et al. (2023) for a detailed listing of LLMs.

Two key ideas that made large language models go from models such as 
BERT to systems like ChatGPT are Supervised Fine-Tuning (SFT) and Rein-
forcement Learning with Human Feedback (RLHF), both of which involve 
a large number of human annotators. In SFT, the LLM is taught to follow 
instructions	for	different	use	cases	(e.g.,	machine	translation,	text	classifica-
tion, chat, writing a short story, et cetera), by providing task descriptions 
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along with example items and soliciting responses from humans for a large 
data	sample.	This	data	is	then	used	to	fine-tune	and	optimize	the	original	pre-
trained LLM to perform diverse tasks. For a given prompt, many outcomes 
are possible from a language model, considering that the output generation 
process is probabilistic. Which is the most preferred by human users? If a 
human user ranks a set of responses by an LLM for a given prompt in terms 
of how good they are, can a model learn to generate “good” responses? 
RLHF is the technique that addresses this question by learning a “reward 
model” and optimizing an LLM to generate responses that align with human 
preferences. The data to learn such a reward model is again collected on a 
large scale by setting up an annotation task where humans choose a pre-
ferred output from the given machine responses. InstructGPT (Ouyang et 
al., 2022), a generative language model from OpenAI which is a predecessor 
of	ChatGPT,	and	GPT4,	was	among	the	first	to	describe	this	approach,	which	
soon became a standard procedure for building large generative AI models.
Any	computer	system	built	for	a	specific	purpose	can	be	evaluated	on	how	

it	performs	on	specific	tasks	that	achieve	that	purpose,	and	machine-learned	
systems are no exception. However, how should we evaluate Generative AI 
systems,	more	specifically,	LLMs	such	as	ChatGPT?	This	is	an	ongoing	and	
active area of research, and the current practices include evaluating LLMs 
on popular benchmarks that cover multiple tasks and languages as well as 
other aspects such as toxicity and harmfulness. Note that there are several 
LLM evaluation benchmarks, and there is no single LLM that performs the 
best on all the benchmarks.  A public leaderboard offers a quick lookup of 
how different LLMs compare against each other on various benchmarks 
(Huggingface.co, 2023). Liu et al. (2023) and Guo et al. (2023) present 
comprehensive surveys on the evaluation of large language models. Note 
that the performance on such standard evaluation benchmarks should not 
be equated to real-world performance in a given application scenario and it 
is possible for an LLM to do well on such benchmarks but not be useful for a 
given real-world task.

There is much more to LLMs and generative AI than what was presented 
so far, and this only aimed to provide a short overview of what generative 
AI is, how it differs from other forms of AI, and how generative LLMs such 
as ChatGPT are built, trained, and evaluated. For a more comprehensive 
discussion about the topic, refer to Jurafsky and Martin (2023). For a con-
temporary	introduction	to	the	artificial	neural	network	models	that	power	
modern generative AI, refer to Prince (2023). With this introduction to what 
generative AI is, let us now turn to how it is impacting the language learning 

http://Huggingface.co
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and technology space.
Impact of Generative AI on Language Learning Technology

The past year witnessed the impact of generative AI in a range of disci-
plines that were not already adapted to AI in general. Hence, it is natural 
that educational technologies, that have already adapted AI across many 
applications, were impacted by generative AI. Some applications such as 
providing reading/writing/speaking support for learners or teaching sup-
port in the form of grading and creating assessment items have improved, 
and	others	that	were	previously	considered	too	specific,	such	as	providing	
personalized, explicit feedback, are now enabled by these new advances. 
There is also a huge potential for previously under-explored use cases for 
AI such as helping teachers with lesson planning or for multimodal content 
generation.	Recent	research	on	the	use	of	generative	AI,	more	specifically	
large language models, in language learning technologies can perhaps be 
grouped into three categories: content and test generation, assessment, and 
assistive tool development. Let us take a closer look at each of them below:

Test item generation: Generation of diverse, high-quality questions from 
a given content, adhering to a given criteria, can reduce the teachers’ work-
load while increasing content quality. It is also useful in the development 
of intelligent tutoring systems. NLP techniques have been used for various 
forms	of	automated	question	generation	in	the	past,	ranging	from	fill-in-the-
blank and multiple-choice questions to generating open-ended questions. 
Recent research discussed the utility of large language models for question 
item generation for English and Swedish texts (Elkins et al., 2023; Goran 
& Abed Bariche, 2023). Other research also showed how ChatGPT can be 
useful in generating questions for assessing English reading comprehen-
sion (Lee et al., 2023; Shin & Lee, 2023). Human validation studies were 
conducted in all these studies to verify the usefulness of machine-generated 
questions. Going a step further, Xiao et al. (2023) demonstrate the usage 
of ChatGPT for both reading text generation as well as exercise generation 
for English reading comprehension. They also report an evaluation study 
with Chinese middle school teachers who concluded the generated texts and 
exercises to be appropriate for their students.

Assessment: Assessment is another area in which the important ap-
plication of Natural Language Processing and AI for language learning and 
technology has been investigated. Automated scoring of essays for language 
proficiency	 or	 short	 answers	 for	 content	 accuracy	 has	 been	well-studied	
in the literature. Over the past year, some work in the NLP community has 
explored the usefulness of generative AI models for this purpose. Naismith 
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et al. (2023) show the use of GPT4 in automatic writing evaluation for dis-
course coherence. Their research showed that GPT4’s ratings correlate well 
with human evaluations, and GPT4 performance is better than a linguistic 
feature-based model baseline for the dataset under consideration. Further, 
the GPT4 response can be accompanied by rationales for the evaluations, if 
necessary. Note that the “rationales” are generated by the model, and need 
not necessarily align with a human evaluator’s rationales.

In contrast to Naismith et al. (2023), another recent work evaluating 
the ability of GPT3.5 and GPT4’s ability to rate short essays on the CEFR 
scale (Yancey et al., 2023) showed that although GPT4 performs on par 
with existing approaches when calibration examples are provided in the 
prompt, agreement with human ratings vary depending on the test taker’s 
first	language.		Another	recent	work	by	Mizumoto	and	Eguchi	(2023)	shows	
that a GPT-based LLM model combined with linguistic feature information 
performs better than just using an LLM by itself. One major concern with 
using some inherently opaque large and complex models is the lack of inter-
pretability and explainability of their predictions. Fiacco et al. (2023) devel-
oped a method to extract and understand the implicit rubrics of such neural 
network models when used as essay scorers. Even though this discussion 
is not exhaustive, it clearly shows the adaptation of generative AI and LLMs 
into automated language assessment research, and we could expect more 
practical utilities in the coming years.

Support tools for language learners: Davis et al. (2024) present a com-
prehensive evaluation of both open-source and proprietary LLMs for (Eng-
lish) Grammatical Error Correction tasks and show that they do not always 
outperform custom-built machine learning models for the task when used 
as-is. However, the quick adaptation to generative AI by language learning 
and writing support software such as Duolingo and Grammarly, which was 
discussed earlier, clearly points to the value these technologies bring to 
language learners when customized to the task. Beyond a language learner 
context, Speakerly (Kumar et al., 2023), a new language learning platform by 
Grammarly, shows how large language models and speech recognition can 
be integrated to build a voice-based writing assistant. Raheja et al. (2023) 
explored instruction tuning, which was described in Section 2, to build a 
text editing system for writing assistance. Expanding the horizons beyond 
the commonly seen applications of NLP in the development of such support 
tools, emerging research has begun to investigate using generative large 
language models for grammatical error correction beyond English (Kwon et 
al., 2023). Duolingo (2023) discusses the use of LLMs for generating person-
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alized feedback for learners. Kew et al.’s (2023) recent work on benchmark-
ing	large	language	models	for	automatic	text	simplification	shows	that	such	
generative AI models can assist in making texts easier to read for learners, 
by producing rephrased versions of the input text with simpler vocabulary 
and syntactic structure.

The use of AI in most of the above-mentioned areas is an existing practice, 
which underwent considerable improvement with the new generative AI 
methods. Language technologies such as machine translation and chatbots 
too have been studied in the context of language learning and teaching in the 
past for quite some time (Freyer et al., 2020; Hellmich et al., 2023). However, 
the limitations of the technologies themselves resulted in their use being 
limited to research studies. Recent advances in neural network techniques 
improved the generative capability of NLP systems. Hence, we may see more 
research into the usefulness of such technologies in language learning re-
search in the future (Huang et al., 2022; Tyen et al., 2022; Zhou et al., 2023).

New developments in generative AI can potentially enable new use cases 
too. Several recent studies (Kasneci et al., 2023; Yan et al., 2023; Yu & Guo, 
2023) provide a broader overview of the potential applications and chal-
lenges of using generative AI technologies in various aspects of education 
(not	specifically	language	education).	Caines	et	al.	(2023)	take	the	specific	
case of language teaching and assessment technologies and discuss how 
generative AI technologies such as large language models can be used in 
novel ways for content generation, providing feedback, open-ended chatting 
at the level of a learner, providing document level assessment and feedback, 
and supporting “plurilingual” learning. Aryadoust et al. (2024) studied the 
use of LLMs for developing listening assessments targeting test takers at 
different	proficiency	levels	and	concluded	that	LLMs	can	be	adopted	at	dif-
ferent stages of listening test development and validation.

Considering pronunciation training in particular, Kheir et al. (2023) pre-
dict that the advances in conversational capabilities of generative AI models, 
coupled with other developments in low-resource and end-to-end speech 
processing, may lead to the development of more sophisticated and per-
sonalized virtual tutors, and support multilingual applications for spoken 
language learning resources such as pronunciation tutors, which have been 
primarily English-focused so far (e.g., Ding et al., 2019; Thompson, 2012; 
Yonesaka, 2017). Asthana et al. (2023) describe an initiative to incorporate 
generative AI into a higher education course and study how automated 
generation of course metadata could support broader instructional goals. 
Matelsky et al. (2023) explore how large language models can be used to 
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provide rapid personalized feedback to students for open-ended questions. 
The discussion in this article revolved around written or spoken texts, but 
we have to remember that language learning involves interaction between 
learners and a range of semiotic modes beyond printed or spoken texts. 
Future developments may lead to the maturing of multimodal learning 
environments with text, images, audio, and other media integrated into the 
learning process using generative AI technologies.

Most of the developments discussed in this section so far show a high 
degree of interest in utilizing generative AI in the language learning and 
technology space. This interest and the push towards adopting generative 
AI into applied linguistics research and practice necessitates a discussion 
around the ethics of using generative AI in this context, particularly on how 
to use the technology appropriately and responsibly. How do applied lin-
guists working in the language teaching and assessment context see the rise 
of these technologies so far?

There has been some discourse in this regard, particularly in language test-
ing research. Summarizing the debate on allowing the use of assistive tech-
nologies including generative AI by test takers for language assessment, Voss 
et	al.	(2023)	suggest	that	language	teachers	must	have	sufficient	expertise	to	
understand and integrate such technologies into their language instruction 
and assessment practice and recommend collaboration between test creators 
and AI developers for ensuring appropriate usage of assistive technologies. 
Taking a holistic perspective on the role of AI methods in the language testing 
and assessment process, Bolender et al. (2023) also recommend a collabora-
tion between AI scientists, psychometricians, and subject matter experts to 
address issues around reliability, validity, and fairness in language test devel-
opment. Another recent article by Xi (2023) echoes this strand of thought, 
emphasizing developing best practices for the ethical and responsible use of 
generative	AI	technologies	specifically	in	the	context	of	language	testing.	It	is	
not surprising that the discussion around the responsible use of generative 
AI in this area started with language testing, as that can be considered as a 
high-stakes application scenario for generative AI compared to others such as 
the development of teaching and learning support tools.

Working with Generative AI
We’ve seen how recent advances in generative AI, especially with large 

language models, have improved upon existing use cases within the realm 
of language learning and technology, and how they opened pathways for 
potential new use cases that were not possible before. Kohnke et al. (2023) 
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in a recent study on generative AI preparedness among university language 
instructors pointed to the need for tailored support for teachers to develop 
AI-related competencies. Some research recommends training both the 
faculty and the students about the effective use of these new technologies 
(Fuchs, 2023; Huallpa et al., 2023). With widespread speculation around 
how ubiquitous generative AI would be in our personal and professional 
lives, how should applied linguists learn to work with generative AI? There 
are two ways:

Prompting: The most common means of interacting with such systems is 
through prompting. A prompt is similar to a “query” given to a search engine 
and can be understood as the input (including any instructions) to the AI 
describing the expected outcome. While having a natural language interface 
to generative AI systems is tempting to get started right away, creating 
proper prompts is more of an art than a science, and it would be useful to 
know some basics to get started. Saravia (2022) provides a comprehensive, 
constantly updated, collection of resources on prompting large language 
models.	 Understanding	 efficient	 and	 effective	 prompting	 methodologies	
could lead to applied linguists exploring the use of generative AI to pursue 
some of the prospective directions mentioned earlier, as well as add another 
tool to their research methods basket. Vee et al. (2023) compiled exercises 
to incorporate generative AI into the practice of teaching writing, which 
could serve as a useful resource for applied linguistics interested in pursu-
ing this direction.

AI Coding Assistant: Another interesting possibility to work with genera-
tive AI as an applied linguist is by using it as a software coding assistant. Ap-
plied linguists, especially those who work on topics such as corpus linguistics 
or CALL have been learning to write software programs across universities. 
However, available teaching and learning material is not often geared towards 
students coming from a language teaching background, making learning chal-
lenging. The advent of generative AI-based assistants to write code over the 
past few years has shown promising results in its use in introductory pro-
gramming classrooms (Porter & Zingaro, 2024; Puryear, 2022).

As for how generative AI is useful in applied linguistics research, the ap-
plications discussed in the previous section hopefully provide useful point-
ers in that direction. Most such research has been traditionally conducted 
on English language resources, considering the amount of available datasets 
and software support. The advent of large language models that have some 
form of knowledge about various languages provides an opportunity to ex-
plore them for other languages (e.g., in the Japanese as a Second Language 
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context). The same applications (content generation, question generation, 
content assessment, learner support tools, etc.) can all be explored and the 
capabilities and limitations of current generative AI methods in a broader 
language learning and teaching technology context can be evaluated for 
other languages as well.

Let us turn to the question: What can applied linguistics contribute to the 
discourse around generative AI itself? With the widespread increase in both 
interest and adoption of generative AI technologies in various application 
domains, there is also a lot of emerging discourse around the responsible 
usage of the technologies to ensure reliability and integrity. Note that this 
discussion	is	field-specific.	For	example,	a	discussion	around	the	ethics	of	AI	
system development typically focuses on issues such as fairness and bias in 
the models, privacy concerns, explainability, and accountability. But when it 
comes to actually using such AI systems in, say, education, there are other (or 
additional) concerns such as the question of what is appropriate usage for a 
student who is learning a topic, or taking part in an assessment to evaluate 
their understanding. This is where the applied linguistics community can 
contribute to the general discourse around the ethics of generative AI usage.

A guideline on the ethical usage of generative AI in language teaching, 
learning, and testing (and more broadly, encompassing other areas of ap-
plied linguistics) is needed considering the growing interest in the commu-
nity on the topic. Yan et al. (2023) discuss ethical concerns around the use 
of AI broadly in the context of education, and Mohammad (2022) suggests 
an	“ethics	sheets”	approach	for	different	AI	applications,	listing	the	specific	
questions that need to be addressed, which can have different answers de-
pending on the task at hand. Both these references are useful in thinking 
about developing guidelines for applied linguistics. The call for developing 
best practices in using generative AI for language testing (Xi, 2023) can be 
considered a starting point in this direction.

The annual state of AI reports published by the Montreal AI Ethics Insti-
tute (Gupta et al., 2023) are useful to give a broader perspective on vari-
ous topics around AI ethics, for readers interested in exploring this aspect 
further. The EU AI Act (European Union, 2024) which proposes to regulate 
the development, deployment, and use of AI in the European Union region 
is another example of a broader discussion around addressing the ethical 
issues around AI and ensuring responsible development of technology.

Limitations and Caveats
Generative AI and its implications and applications are speculated upon 
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and adopted widely, but this is not immune to challenges. Over the past year, 
researchers have widely discussed the technological as well as behavioral 
limitations of generative AI systems (see Kaddour et al., 2023 for a com-
prehensive discussion). Here are some limitations one needs to be aware of 
while using generative AI systems:

• Brittleness of the prompt-based querying process: Small changes in 
the prompts given to generative AI systems can sometimes result in 
drastic changes in output, which pose problems in terms of reliability 
and reproducibility of the process.

• Hallucinations: Generative AI systems such as large language models 
can produce potentially inaccurate, and at times, completely false 
information, which may be hard to detect, as the text itself is highly 
fluent.

Although the above-mentioned limitations arise from the working of the 
systems themselves, the abilities of these systems, along with their ubiquity 
now, pose two other problems:

• Distinguishing between machine and human-generated output is 
sometimes	 difficult	 owing	 to	 the	 fluency	 and	 human-like	 text	 pat-
terns. However, there is some ongoing research into watermarking 
AI-generated output, which can potentially help address such issues 
in the future.

• Access to such AI systems could potentially compromise the integrity 
of computer-based testing scenarios, as some recent research showed 
(de Winter, 2023). Research into alternative formats of assessment 
may help overcome the challenges that arise out of this issue.

With existing limitations and the potential problems that may arise 
from the use of these technologies, should we prohibit their use until some 
solutions have been found? Current discussion in the research community 
instead suggests acknowledging the ubiquity of generative AI today, and 
adapting the teaching and evaluation approaches accordingly (Yu, 2023). 
Finally,	it	has	to	be	noted	that	these	limitations	and	caveats	reflect	the	cur-
rent state-of-the-art, and the mitigation of such issues is currently an active 
area of research. Thus, we could expect future research to develop new 
systems that can overcome such challenges, as far as the technology itself is 
concerned. However, responsible and ethical use of any technology needs to 
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be separately addressed for a given application scenario, irrespective of how 
good or advanced the technology is. The guidelines on the responsible use of 
generative	AI	should	be	field-specific,	and	application-specific,	and	develop-
ing	more	 specific	 guidance	on	 the	use	of	 generative	AI	 covering	different	
topics in applied linguistics would be a worthwhile direction to pursue, as 
the adoption of these technologies increases.

Summary
In this Expositions article, I aimed to give a broader overview of generative 

AI and its implications for applied linguistics researchers and practitioners. 
In doing so, I attempted to summarize recent research on generative AI in 
areas related to applied linguistics from the Natural Language Processing 
community, as well as the perspectives from applied linguistics research and 
practice. Some guidelines were provided for applied linguists who are inter-
ested in getting started with generative AI technologies, and potentially new 
research	directions	were	identified.	Generative	AI	was	described	as	an	active	
research area with a blurring divide between research and practice today. 
Hence, it is important to be aware of its current limitations and potential 
issues that may arise, and I have provided some guidance in that direction. 
The capabilities of current generative AI methods open up new avenues 
for applied linguists, and I hope this article serves as a starting point for 
a	deeper	exploration	of	these	technologies	and	their	relevance	to	the	field.
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